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ABSTRACT

Reconfigurable and cascadable building block neural network chips,
fabricated using analog VLSI design tools, are interfaced to a PC.
The building block chip designs, the cascadability and the hardware-
in-the-loop supervised learning aspects of these chips are described.
We also report on the computation-intensive problem of map-data
classification. For this application, a 486-cmbeddable  neuro-
processor card is highlighted that shows the promise of systcm-level
speeds (including 1/0) exceeding that of CD-ROM.

INTRODUCTION

Artificial neural network paradigms are derived from the biological nervous system
and are characterized by dense interconnections of simple processing elements. These
processing elements called neurons are typically analog, have a multitude of signal-
modulating weighted links from other similar neurons and perform a signal
summation function followed by a nonlinear thresholding operation to the myriad of
incoming signals. Such a structure provides massive parallelism in its information
processing function, and is known to code and store intelligent information in a highly
distributed manner via the weights of the interconnecting links[l].

To harness full power of neural net’s parallelism for obtaining high-speed
solutions to computationally intensive problems, these parallel architectures have been
implemented both in digital and analog hardware. In general, analog implementations
offer low power consumption and compactness, whereas digital implementations
provide better precision[2-4].

JPL’s approach of analog “building-block” chips is motivated by the
requirements of deployable low power data processing systems. Design and
fabrication of such chips that can be cascaded and reconfigured to cater to different
architectures, sizes, and resolutions of synaptic weights in the analog domain has
offered not only a flexible research tool, but also the ability to seek selected
computation-intensive applications where conventional techniques are too slow or
merely not capable.



We describe VLSI chip-implementations of synaptic matrices and arrays of
neurons, cascadable to larger networks and reconfigurable with full conncctivity[5].
Using these chips, embeddable 386/486 PC-compatible cards have been implemented.
A feature classification application with map-data requiring a feedforward architecture
and supervised training is presented here. The same card has also been reconfigured
as a feedback net to perform such optimization tasks as resource allocation[4].

NEURAL NETWORK HARDWARE

Hardware implementation of neural nets involves design of two elements: synapses
that arc the variable weight (conductance) links, and neurons that are the non-linear
elements performing thresholding operations. We describe the VLSI implementation
where the weights are stored on-chip using digital logic and incorporating the digital to
analog converters (DACS) to obtain analog weights [6].

In effect, a synapse performs the function of multiplication of an input
(current) with its stored weight, while the neuron maps the sum of several input
current signals via a non-linear sigmoidal transfer function as a voltage output.

SV apse Cn hip Des ~i
Our synapse chip design is a 32x32 synaptic crossbar matrix with 32 input and 32
output lines. A global voltage-to-current conversion as current input to synapses is
provided for each row. At each node of the matrix is incorporated a 7-bit synapse.
The basic synapse circuit consists of two functional blocks: (i) a 6-bit digital-to-analog
conversion (DAC) with digital latches and associated current mirrors; and (ii) a
current steering block for the sign bit. Additionally, ecodcrs for row/column select
and address/data lines are included for random accessibility and programmability.

To increase the number of inputs and/or outputs beyond 32, additional chips
with respective inputs and outputs provide a cascaded larger net. In addition, the
resolution of the synapses can be increased by cascading in the third dimension. The
relative strength of a synapse within a chip is determined by a global reference signal
which provides the current-mirrored signals to individual synapses. By piggy-
backing an additional chip with lower-valued reference signal (1/64th of its primary
reference value) -- in effect paralleling each bit weight of the synapse in the array with
all the weight bits of the respective synapse in the piggy-backed chip to act as a
vernier-- the weight values have been resolved beyond the inherent 7 bits of accuracy
to a nominal 13 bits (12 bits ph.Is sign), with at least 11 most significant bits providing
a linear and monotonic response.

s!’nat)se-Neuron Compos]te  Ch p Des* i icn
A synapse-neuron composite architecture has 32 neurons replacing synapses along
onc of the diagonals in the synaptic matrix. The input to the neuron is a current signal
that is sum of the current outputs by the connected synapses. The neuron input-output
characteristics are a set of sigmoids with variable slope. Each neuron output feeds
back to the respective input, thereby providing a fully feedback connected network,
and by judicious programming of the synapses, a feedforward architecture on the chip
is obtained. The synapse-neuron chips, as also the all-synapse chips, were fabricated
in VLSI employing 2-~m feature geometry.



With the availability of these composite chips, two of thcm were cascaded with
two synapse chips to act as a 64x64 matrix of 7-bit-resolution fully connected synaptic
network with 64, wide-range, variable gain neurons. In addition, by cascading four
additional synapse chips, thereby paralleling synapses of the respective two chips as
shown schematically in Figure 1, and adjusting the chip gain levels accordingly, the
effective dynamic range of weights was increased to 11 bits[5]. This circuit was
characterized to obtain the synapse bit-resolution data in combination with a neuron
transfer function. A set of typical curves shown in Figure 2 highlight the
monotonicity of the input-output relationship along with the variable gain feature of
the neuron design. Thus, a total of eight chips cascaded together in x-y-z plane
formed a 64-neuron fully interconnected array with over 4000 synapses, each with an
effective =11 -bit resolution. This is the first evel embodiment with the synapse
resolution of =1 1 bits, permitting hardware-in-the-loop learning.

Plup-in  Card Deve  opmenl1
Based on the development of building block neuron-synapse chips, a neuroproccssor
card was designed and assembled with the required interface circuitry for direct
insertion into a X86-compatible back plane (Figure 3). The neuroproccssor  card,
while affording great control and flexibility, only begins to tap the power of the neural
network chips with their parallel processing and high speed capabilities. With analog
processing, the interface with the host digital machine becomes an intricate challenge
to design. To reduce the 1/0 bus processing time, a high-speed 2 MHz analog to
digital converter that plugs directly into the PC-bus was incorporated.

LEARNING ALGORITHM

The Cascade Backpropagation algorithm that permits the starting perception
architecture to evolve by allocating hidden neurons as nccdcd is similar to the Cascade
Correlation algorithm[6], and performs gradient-descent learning. The pseudo-
invcrse computation is used to directly calculate the pcrceptron weights based on input
and output patterns (with initial compensation for the nonlinear sigmoidal function).
A hidden neuron is then connected via synapses from inputs to outputs. Back
propagation (gradient-dcsccnt)  learning is used to set both the perception (and bias)
and the newly added weights. Neurons are added as hidden units onc at a time to
learn the required input to output mapping[7].

A key calculation for hardware-in-the-loop learning operation is the slope of
the transfer characteristics of the neurons at their rcspcctivc  operating points. This
was achicvcd by perturbing the bias weights by small amounts which provided the
required change in the neuron operating points and hence allowed the calculation of
the derivative to bc performed. With the outputs of all neurons (input, hidden, and
output) and their respective derivatives known, and the differences of actual and target
outputs dctcrmincd, the weight change in hardware is effected through the software.

The iterative process repeats until the learning saturates (no change in output)
or a limit, by way of a predetermined maximum number of iterations, is rcachcd. The
learning process is ended when the desired degree of tolerance between target and the
network output is reached. The process of learning uscs 11 bits of synapse precision
as available, and even though the weight updates might occasionally bc in error in



magnitude or even in sign, the stochastic nature of analog VLSI would eventually
cause the non-monotonicitics  to be bridgcd[7].

RESULTS

Paper maps contain a massive amount of important data in an unwieldy format. To
increase its utility, copious amounts of these data have been scanned into digital map
knowledge base where each pixel data is a 3 color, 8-bit pcr color (24 bits/pixel)
representation. However, the user is more interested in, say, display of roads, or
rivers, etc., rather than the shades of colors. Therefore, a further processing involves
extraction of a few (6 to 7) features. This step of feature extraction not only makes
the maps more useful, but also compresses the data from 24 to, say, lCSS than 3 bits,
and puts it in a format that can bc easily manipulated by the analyst as required.
Normally, the process involves statistical methods requiring assumptions of Gaussian
data spread along pixels with lengthy manipulations. We chose to classify the data
using a feed forward neural network for its speed and especially because of its
capability to generate optimal decision surfaces without a priori assumptions of any
relationships (Gaussian or otherwise) except the availability of rcprescntativc ground
truth data. A key rcquircmcnt  of the task was to demonstrate the speed potential
cxcccding the CD-ROM rate (=60,000 pixels/sec)[7].

The map consisted of a 305X200 pixel fragment. A grcy scale version of the
original is shown in Figure 4a. Each pixel was to be classified into one of seven
classes (roads, rivers, forests, contour lines, symbols/names, man-made features, and
open areas). A training set (3800 pixels) was generated by an analyst. To enable a
pixel to be classified within its local context, a 3x3 map-window was considered as
input, yielding 27, 8-bit inputs for each pixel classification.

To test the processing speed in hardware, a neural network was trained in
software, and then the learned weights were downloaded into the plug-in card. To
compensate for the discrepancies bctwccn the hardware and the software model, an
abbreviated learning algorithm was applied to just the neuron bias (threshold)
connections. Hardware-in-the-loop training adapted these weights to the hardware in
lCSS than 4 seconds. The complete processing of 61,000 pixels including a graphics
display was performed in about 7 seconds; the ncuroprocessing time was just a
fraction of a second (144,000 pixels/s). This implies an overall feed-forward
processing rate of over 8,700 pixels pcr second. A grey scale rendition of the output
data is shown in Figure 4b.

This clearly showed that 1/0 still dominated overall processing time. Current
efforts arc focusing on a next generation plug-in card that — based on experience
gained so far — will generate another order of magnitude speed-up in communications
through the use of parallel digital-to-analog converters and direct memory accessed
(DMA) data transfers. The enhancement will demonstrate the processing speeds
excccding those of a CD-ROM.

CONCLUSIONS

Neurally inspired architectures with their massive parallelism when implcmcntcd in
hardware offer near real time processing for certain ill-defined and/or computation-
intensive applications. JPL’s embeddable and rcconfigurable ncuroprocessors arc



unique because of their use of analog device implementations that provide
compactness and low power, essential for deployable hardware. Hardware-in-thc-
loop learning, obtained as a result of innovative high resolution synaptic designs, is an
added feature required for selected time critical applications for such areas as
autonomous guidance, chemical process control, vehicle health monitoring, focal
plane image processing, resource allocatiordtargct
applications.

ACKNOWLEDGMENT

assignment, and other avionics

The research described in this paper was performed by the Center for Space
Microclcctronics Technology, Jet Propulsion Laboratory, California Institute of
Technology, and was jointly sponsored by the All Source Analysis Systems Program
Office, the Advanced Research Projects Agency, the Ballistic Missile Defense
Organization/Innovative Science and Technology Office, the Office of Naval
Research, and the National Aeronautics and Space Administration.

REFERENCES

1.

2.

3. .
4,

5. .

6.

7.

P.K, Simpson, “Foundations of Neural Networks,” in ~
Ekls.: E. Sanchez-Sincncio  and C. l.au, I1;EE

Press, Ncw York, 1992, pp. 3-24.
M. IIollcr,  S. Tam, H. Castro, and R. Benson, “An Electrically Trainaldc  Artificial Neural
nclwork  (ETANN) with 10240 “Floating Gate” synapses, ” Proceedings of the IEIiE Int, Joinl
Conf, Neural Networks, vol. 11, June 18-22, 1989, Washington, DC, pp. 191-196.
C. Mead,  ~,Addison-WcxIcy,  Reading, MA, 1989.
S.P. 13bcrhardt,  R, Tawel,  T.X Brown, T, Daud, and A,P. Thakoor, “Analog VLSI Neural
Networkx Implementation Issues and Examples in Optimization and Supervised I,earning,”  Jl;lil;
Trans. Indust. Iilcctron.  vol. 39, no. 6, pp. S52-564, Dec. )992.
1. Duong, S.P. Eberhardt,  M, ‘l’ran, T, Daud, and A, I>. Thakoor,  “1.earning and Optimization
with Cascaded VLSI Neural network Building-Block Chips,” Proeecdings  of the IEEIUINNS
Intcmational Joint Conference on Neural Networks, June 7-11, 1992, Baltimore, MD, vol. I, pp.
184-189.
S.E. Fahlmann,  C. I.ebicre,  “The cascade correlation learning architecture,” in Advances  in

>~ Fd, D. Tourctzky, Morgan Kaufmann, San Mateo,
CA, 1990, pp. 524-532.
T.X Brown, M.D. Tran, 1. Duong, T. Daud, and A,P, Thakoor, “Cascaded VLSI Neural Network
Chips: Hardware Learning for Pattern Recognition and Classification,” Simulation, vol. 58, no.
5, pp. 340-346, 1992.



SUM ,

SUM , I

J ●
● I

X“

N& - NEURON-SYNAPSE CHIP
s - SYNAPSE CHIP
X Y DIRECTIONS FOR LARGER SIZE NETWORK
z DIRECTION FOR HIGHER SYNAPSE

Figure 1. A schematic of an
circuit with 13-bit resolution.

eight-chip, cascaded 64x64 neuron-synapse
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Figure3.  AX86PC-compatible  analog neuroprocessor-card.



Figure 4a. Agreyscale  rendition ofa305=OO-pixel  input map(3 colors/
pixel and 8 bits/color) data.

Figure4b. Agreyscale  rendition of thehardware generated output with
extracted seven features (one color/pixel)


